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Abstract
Background Mammographic density has been associated with breast cancer risk, and is modulated by established 
breast cancer risk factors, such as reproductive and hormonal history, as well as lifestyle. Recent epidemiological and 
biological findings underscore the recognized benefits of breastfeeding in reducing breast cancer risk, especially for 
aggressive subtypes. Current research exploring the association among mammographic density, breastfeeding, and 
breast cancer is sparse.

Main findings Changes occur in the breasts during pregnancy in preparation for lactation, characterized by the 
proliferation of mammary gland tissues and the development of mammary alveoli. During lactation, the alveoli fill 
with milk, and subsequent weaning triggers the involution and remodeling of these tissues. Breastfeeding influences 
the breast microenvironment, potentially altering mammographic density. When breastfeeding is not initiated after 
birth, or is abruptly discontinued shortly after, the breast tissue undergoes forced and abrupt involution. Conversely, 
when breastfeeding is sustained over an extended period and concludes gradually, the breast tissue undergoes 
slow remodeling process known as gradual involution. Breast tissue undergoing abrupt involution displays denser 
stroma, altered collagen composition, heightened inflammation and proliferation, along with increased expression of 
estrogen receptor α (ERα) and progesterone receptor. Furthermore, elevated levels of pregnancy-associated plasma 
protein-A (PAPP-A) surpass those of its inhibitors during abrupt involution, enhancing insulin-like growth factor (IGF) 
signaling and collagen deposition. Prolactin and small molecules in breast milk may also modulate DNA methylation 
levels. Drawing insights from contemporary epidemiological and molecular biology studies, our review sheds light on 
how breastfeeding impacts mammographic density and explores its role in influencing breast cancer.

Conclusion This review highlights a clear protective link between breastfeeding and reduced breast cancer 
risk via changes in mammographic density. Future research should investigate the effects of breastfeeding 
on mammographic density and breast cancer risk among various ethnic groups and elucidate the molecular 
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Background
According to global cancer statistics, female breast can-
cer has emerged as the most diagnosed cancer world-
wide, ranking as the foremost contributor to cancer 
incidence [1]. Several countries have implemented regu-
lar breast cancer screening programs, utilizing mammog-
raphy to enhance the early detection of this disease. Over 
the past few decades, there has been more focus on iden-
tifying various risk factors associated with breast cancer, 
including specific gene mutations, mammographic den-
sity, reproductive factors, lifestyle choices, dietary hab-
its, environmental exposures, and more [2] (Fig. 1). High 
mammographic density, among the risk factors associ-
ated with breast cancer, is notably recognized as an inde-
pendent one that increases breast carcinogenesis [3–5] 
and which can diminish the sensitivity of mammogra-
phy in screening procedures [6–8]. It also stands out for 
being non-static in the span of a woman’s life, owing to 
its changeable nature which can be influenced by estab-
lished breast cancer risk factors, such as reproductive 
and hormonal history, as well as lifestyle [9–12].

In recent decades, breastfeeding has become a topic 
of increasing concern, drawing particular interest in 
its implications and optimal duration. Recent epide-
miological and biological research has underscored the 
acknowledged benefits of breastfeeding in mitigating the 
risk of breast cancer, notably of its more aggressive sub-
types [13–15]. Currently, research exploring the associa-
tion among mammographic density, breastfeeding, and 
breast cancer is still relatively sparse. Our review aims 
to analyze and synthesize the existing epidemiological 
studies on the association among mammographic den-
sity, breastfeeding, and breast cancer. In addition, we 
endeavor to elucidate the multifaceted dynamics of how 
mammographic density, influenced by breastfeeding, 
impacts breast cancer risk. Furthermore, we seek to high-
light gaps in current knowledge and suggest directions 
for future research, particularly in understanding the 
mechanisms underlying these associations.

Mammographic density and breast cancer risk
Mammographic density is defined as the proportion of 
fibroglandular tissue relative to fatty tissue within the 
breast. The fibroglandular tissue, comprised of “fibrous” 
(stromal) and “glandular” (lobular and ductal) compo-
nents, which absorbs ionizing radiation, manifests as 
white areas, in mammography [6]. Hence, it is commonly 
referred to as “dense tissue”. Breast cancer typically origi-
nates from the ductal and glandular components of the 

breast, which appear white on mammography. Con-
sequently, dense tissue, due to its similar radiographic 
appearance, can obscure these cancers, effectively mask-
ing them from detection.

Two-dimensional digital mammography (DM) and 
digital breast tomosynthesis (DBT) are most commonly 
used technologies. To standardize clinical interpretations 
of imaging, the American College of Radiology intro-
duced the Breast Imaging Reporting and Data System 
(BI-RADS), which comes up with four distinct risk cat-
egories of mammographic density. In the 5th edition, it 
delineated mammographic density categories as [16]: (a) 
Almost entirely fatty; (b) Scattered areas of fibroglandular 
density; (c) Heterogeneously dense, potentially obscuring 
the detection of small masses; and (d) Extremely dense, 
which lowers the sensitivity of mammography (Fig. 2).

Numerous epidemiological studies have demonstrated 
that high mammographic density is associated with an 
increased risk of breast cancer, with this evidence pri-
marily derived from cohort and case-control studies 
[3–5, 17–20]. Initial case-control studies conducted by 
Wolfe et al. [21] and Boyd et al. [22] revealed that women 
with the highest mammographic density category are 
more likely to develop breast cancer compared to those 
with low mammographic density category. This signifi-
cant finding suggests that high mammographic density 
may serve as a surrogate marker of increased breast 
cancer risk. The association has been later confirmed by 
research conducted on various ethnic populations world-
wide, under the guidance of a singular measurement of 
mammographic density, however, many studies assessing 
the correlation between mammographic density and the 
risk of breast cancer have relied on a singular measure-
ment of mammographic density. This approach presents 
considerable variability in the interval between the diag-
nosis of breast cancer and the timing of the last negative 
mammogram [23].

Contribution of genetic factors to mammographic density
Given the substantial body of research establishing the 
heritable nature of mammographic density and its role 
as a significant risk factor for breast cancer [24–26], par-
ticularly among individuals with a family history, there’s 
compelling evidence for the genetic influence on mam-
mographic density [18, 25, 27, 28]. For instance, a cohort 
study involving 1,370 women from 258 independent fam-
ilies pinpointed the influence of a major autosomal gene 
on mammographic density, as demonstrated by separa-
tion analysis [25]. Furthermore, classic twin studies have 

mechanisms underlying these associations. Such comprehensive research will enhance our understanding and 
facilitate the development of targeted breast cancer prevention and treatment strategies.
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delineated the substantial genetic contribution to varia-
tions in mammographic density, revealing heritability 
estimates ranging from 60 to 75% [26]. The significant 
heritability of mammographic density underscores the 
necessity of research into the shared genetic loci that 
influence both mammographic density and breast can-
cer [29–32]. This necessitates a deeper exploration into 
the mechanistic pathways linking these genetic loci with 
breast cancer risk, offering a fertile ground for advancing 
our understanding and potentially uncovering new thera-
peutic targets.

In-depth whole-genome array analysis further revealed 
how specific genetic variations influence breast can-
cer risk by modulating mammographic density. For 
instance, the down-regulation of UGT genes due to 
exposure to female sex hormones is directly associated 
with high mammographic density, which could further 
increase the risk of breast cancer [33]. This discovery 
not only enriches the comprehension of the hormonal-
genetic interplay affecting mammographic density but 
also prompts further investigation into the preventive 
strategies that could mitigate these risks. Further study 
has discovered that tumors in different mammographic 

densities exhibit distinct genetic characteristics, such 
as an increased frequency of TP53 mutations and the 
extent of genomic alterations, revealing how mammo-
graphic density is linked to breast cancer risk through 
genetic pathways [34]. Furthermore, research has shown 
that single-nucleotide polymorphisms (SNPs) are associ-
ated with mammographic density, indicating that these 
genetic variations may influence breast cancer risk by 
altering mammographic density [35, 36]. A meta-analy-
sis [37] of 68 studies identified key genetic modifiers for 
mammographic density such as ESR1 and IGF1, sug-
gesting their potential as biomarkers for risk assessment. 
Additionally, a study linking polygenic risk scores (PRS) 
with mammographic density underscores the genetic 
basis of breast cancer risk [24]. These findings underscore 
the importance of further exploring the genetic basis of 
mammographic density for the early identification of 
breast cancer risk and the development of personalized 
screening strategies.

Fig. 1 The risk factors associated with breast cancer. Note: The figure was drawn by using Figdraw
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Fig. 2 The images represent different categories of mammographic density: (A) almost entirely fatty; (B) scattered areas of fibroglandular density; (C) 
heterogeneously dense; (D) extremely dense. Source: Images courtesy of Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital 
& Institute
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Contribution of environmental factors to mammographic 
density
Mammographic density is known to be influenced by 
reproductive history, lifestyle choices, and exogenous 
hormones [10, 38–41], indicating that it may serve as a 
marker of exposure to environmental factors that pre-
dispose women to breast cancer. Pike et al. [42] has pro-
posed a model of breast cancer incidence that shifts focus 
from chronological age to the concept of “breast tissue 
exposure”. This model identifies the exposure of breast 
tissue to hormonal and reproductive factors as criti-
cal determinants, affecting the tissue’s susceptibility to 
carcinogens. Generally, mammographic density either 
remains stable or decreases incrementally with time. An 
increase in mammographic density, however, may signify 
proliferative changes that surpass the effects of aging. 
Changes in mammographic density can reflect the hor-
monal environment of a woman, as well as the reproduc-
tive factors that are associated with breast cancer risk.

Puberty is a critical period for breast development, 
during which endocrine and paracrine factors stimulate 
the growth of epithelial, stromal, and adipose tissues in 
the breast [43, 44]. The relative proportions of these dif-
ferent cell types determine mammographic density and 
influence the risk of breast cancer. Epidemiological stud-
ies have found that timing of puberty, onset of pubertal 
breast development, onset of menstrual cycling, and 
pubertal tempo, were associated with adult mammo-
graphic density [45–50]. For example, Schoemaker et al. 
[46] found that earlier pubertal onset was associated with 
lower adult mammographic density. Another prospec-
tive cohort study found that a slower pubertal tempo was 
associated with higher mammographic density in young 
women [45]. Some studies have found that later age at 
menarche was positively associated with mammographic 
density [47–50], while others found no relationship 
between age at menarche and mammographic density 
[11, 51, 52]. Additionally, fatty deposition and glandular 
involution post-menopause can significantly influence 
changes in mammographic density [53–55]. Many epi-
demiological studies have used subgroup analyses, strati-
fying populations by menopausal status to adjust for 
potential confounding factors.

Some studies have explored the inverse relationship 
between body mass index (BMI) and mammographic 
density, indicating that higher BMI is often associated 
with lower mammographic density [11, 56–60]. This 
trend persists when examining the impact of pubertal 
adiposity, as measured by BMI, on mammographic den-
sity in adult women [47, 48, 61]. Epidemiological studies 
have also evaluated the association between mammo-
graphic density and other risk factors, such as alcohol 
consumption, smoking, diet, and physical exercise; how-
ever, the results were not always consistent [62–67]. The 

variability in findings across different studies highlights 
the intricate interplay of genetic and environmental fac-
tors that contribute to mammographic density and, by 
extension, breast cancer risk.

Breast tissue composition associated with mammographic 
density
Breast tissue comprises mammary epithelial cells, where 
breast cancer mostly originates, as well as stroma, includ-
ing mammary fibroblasts, collagen, immune cells, and the 
extracellular matrix (ECM), and adipose tissue [68, 69]. 
The relative abundance of these components determines 
mammographic density that appears on the mammog-
raphy. The intricate interplay between the epithelium, 
stroma, and ECM may play a role in elevating mammo-
graphic density and, consequently, breast cancer risk.

Epithelium and stroma
Some studies, utilizing surgical biopsies or mastec-
tomy specimens for histological comparison with mam-
mographically determined mammographic density, 
have found that increased amounts of epithelium and/
or stroma are associated with higher mammographic 
density [70–74]. The structural and signaling scaffold 
provided by the stroma not only encapsulates epithelial 
structures but also fosters their optimal development and 
functionality, mediating this through paracrine growth 
factors [75]. Increased stromal density directly regulates 
the three-dimensional mechanical microenvironment 
of mammary epithelial cells, influencing proliferation 
and phenotype [76]. However, not all studies found an 
increase in cell proliferation in denser breast tissues, 
indicating that other factors might be at play [74, 77, 78]. 
In a study analyzing samples from women undergoing 
prophylactic mastectomy, tissues with high mammo-
graphic density exhibited increased collagen deposition 
and organization compared to those with low mammo-
graphic density [74]. Additionally, another study con-
firmed that high mammographic density is associated 
with a higher proportion of stromal composition, par-
ticularly increased collagen density and fibrosis extent 
[79]. These findings underscore the role of the breast’s 
extracellular matrix in modulating tissue stiffness and 
potentially facilitating a pro-carcinogenic microenviron-
ment. Interactions within the breast microenvironment 
influence each component, and changes induced by vari-
ous factors in any component can directly or indirectly 
alter the microenvironment, thereby influencing the risk 
of breast cancer.

Fibroblasts
Fibroblasts, the predominant cell type in the mammary 
stroma, play a crucial role in the production and turnover 
regulation of collagen and other ECM components [69]. 
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In regions of high mammographic density, fibroblasts 
may secrete soluble factors that trigger the prolifera-
tion of epithelial cells [75, 80]. Subsequently, these over-
stimulated epithelial cells may experience phenotypic 
alterations and release factors that re-activate fibroblasts, 
creating a dynamic feedback loop that further stimulates 
fibroblast activity [75]. Continuous activation of fibro-
blasts can lead to the excessive accumulation of these 
components, resulting in fibrosis [69]. This process can 
be modulated by signals from immune cells present in 
the mammary stroma [34, 81]. Research has consistently 
shown that, compared to low mammographic density, 
high mammographic density is associated with a more 
pro-inflammatory environment [34, 81, 82]. The chronic 
pro-inflammatory milieu in dense breast tissue could 
serve as a priming ground for oncogenic mutations, facil-
itating the transition from hyperplasia to malignancy.

Collagen
Collagen, a key fibrous protein within the ECM, is now 
recognized not just for its structural role but also for its 
dynamic involvement in breast cancer pathogenesis. The 
established correlation between collagen’s abundance 
and alignment in tissues with high mammographic den-
sity underscores the intricate relationship between the 
ECM composition and tumorigenesis [83]. Provenzano 
et al. [76] utilized a bi-transgenic tumor model featur-
ing increased stromal collagen in mouse mammary tissue 
to assess the impact of collagen density. Their findings 
revealed that heightened collagen levels in mouse mam-
mary tissue significantly accelerated tumor formation 
and led to a markedly more invasive phenotype. Further 
analysis utilizing second harmonic generation imaging 
on breast biopsies, discovered that as the severity of diag-
nosis increased, collagen fibers tended to be less dense, 
shorter, straighter, thinner, and more aligned with each 
other [83]. The increased deposition of fibrillar collagen 
has been demonstrated to lead to enhanced matrix stiff-
ness and disrupt physiological mammary morphogenesis 
[84].

Targeting the mechanical properties of the ECM may 
offer new avenues for cancer treatment. A study provided 
direct 3D experimental evidence showing that ECM 
alignment and density could expedite breast cancer pro-
gression by fostering fibroblast induction and inhibiting 
T-cell activation [85]. This insight of the ECM’s capac-
ity in modulating the immune response highlights an 
underexplored avenue for the potential treatment role 
of ECM organization and density in breast cancer. Lysyl 
oxidase (LOX), a crucial mediator of collagen crosslink-
ing, emerges as a potential therapeutic target due to its 
significant contribution to stromal stiffening and its piv-
otal role in maintaining ECM integrity [86]. The activity 
of LOX is essential for reinforcing the tensile strength of 

the ECM, which suggests that modulating LOX activity 
could alter the tumor microenvironment and potentially 
inhibit tumor progression [87].

Within this dynamic mechanical microenvironment, 
epithelial cells are significantly influenced by the dense 
collagenous stroma. At the molecular level, the identi-
fication of key pathways regulating epithelial-stromal 
interactions, particularly those mediated by focal adhe-
sion kinase (FAK), opens up new possibilities for target-
ing cell adhesion and migration in cancer therapy [88]. 
FAK, a widely expressed non-receptor protein tyrosine 
kinase, is pivotal in regulating cell proliferation and gene 
expression via Extracellular-Signal Regulated Kinase 
(ERK)-mediated pathways [88]. It initiates cytoskeletal 
rearrangements and cellular shape changes, promoting 
actomyosin stress fiber formation [89]. Additionally, FAK 
influences cell motility and migration by loosening focal 
adhesions and upregulating MMP-9, contributing to 
the invasive phenotype of breast cancer [90]. In conclu-
sion, while these findings advance our understanding of 
collagen’s role in breast cancer, they also beckon further 
research into how these mechanisms can be harnessed 
for clinical benefit. Future studies should aim to explore 
the translational potential of targeting ECM components 
and their regulatory pathways, such as LOX and FAK, 
to develop novel therapeutic strategies against breast 
cancer.

Other ECM components
The ECM is a complex and dynamic entity that, besides 
including collagen, encompasses other proteins such as 
laminin, fibronectin, proteoglycans (PGs), and proteases 
[91]. These components act as a structural scaffold, offer-
ing support for tissue assembly, maintenance, and integ-
rity. Small leucine-rich proteoglycans (SLRPs), such as 
lumican, decorin, fibromodulin, and biglycan, play a cru-
cial role as components of the ECM and are associated 
with increased tissue density [92–94]. Additionally, the 
accumulation of the matrix proteoglycan versican within 
the tumor stroma has been correlated with dense breast 
tissue and malignant transformation [95].

Immune system components
Several studies have showed that dense breast tissue was 
associated with a pro-inflammatory microenvironment 
that may promote cancer development [96–98]. Vari-
ous immune cells, including macrophages, eosinophils, 
neutrophils, and lymphocytes (T and B cells), are inte-
gral to the mammary gland’s development and trans-
formation [99]. These cells contribute to inflammatory 
responses and shape the tumor microenvironment by 
secreting cytokines, enzymes, and chemokines (Table 1) 
[100–103].
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There still remain many gaps in our understanding of 
the cellular and molecular mechanisms that underpin 
the strong association between mammographic density 
and breast cancer predisposition. The evidence points to 
a complex network of interactions that govern the rela-
tionship between mammographic density and cancer 
risk, implying that risk reduction strategies must account 
for the intricate composition of breast tissue and its 
microenvironment.

Breastfeeding and breast cancer risk
Breast tissue undergoes continuous transformation 
throughout an individual’s lifetime. This includes the 
expansion and development of the mammary gland 
during puberty, cyclic proliferation and involution cor-
responding with menstrual cycles, glandular and ductal 
adaptations during lactation, and the deposition of fatty 
tissues coupled with further involution post-menopause 
[10]. Recent epidemiological findings underscore the 

recognized benefits of breastfeeding in reducing breast 
cancer risk, especially for aggressive subtypes [14, 104–
109]. A collaborative reanalysis involving 47 epidemio-
logical studies across 30 countries has demonstrated that 
the relative risk of breast cancer decreases by 4.3% for 
each year of breastfeeding [14]. This relationship holds 
true consistently across women from both developed and 
developing countries, spanning various ages and ethnic 
origins, and encompassing diverse childbearing patterns 
and personal characteristics. Specifically, breastfeed-
ing has been shown to reduce the risk of triple-negative 
breast cancer (TNBC) by 20% and offers a risk reduc-
tion of 22–50% in carriers of BRCA1 mutations [107, 
110–112]. Notably, a study including 4,000 Black women 
diagnosed with breast cancer, alongside 14,000 control 
participants, revealed a correlation between childbearing 
and an elevated risk of estrogen receptor negative (ER-) 
and TNBC. Crucially, this study also identified breast-
feeding as a significant mitigating factor in reducing this 
heightened risk [113].

Childbearing is generally linked to a long-term reduc-
tion in breast cancer risk; however, recent research indi-
cates a nuanced pattern, particularly noting a transient 
increase in risk during the early postpartum period, spe-
cifically within the first 5–10 years following childbirth 
[114–116]. Key factors influencing this increased risk 
include maternal age at first childbirth, with older first-
time mothers facing higher risks compared to younger 
ones [116], and the duration of breastfeeding [14, 117]. 
Extended breastfeeding, particularly beyond 12 months, 
is associated with substantial protective benefits against 
breast cancer [104, 105, 118]. This protective effect 
underscores the critical importance of breastfeeding 
duration in mitigating breast cancer risk. Additionally, 
women with no prior births (nulliparity) and those who 
delay childbearing are often found to have higher mam-
mographic densities, further elevating their breast cancer 
risk [55, 115, 119]. The challenge is compounded by the 
lower frequency of mammographic screenings in young 
postpartum women, resulting in cancers that are typically 
self-detected, larger, and more advanced than those iden-
tified through routine screenings. To effectively manage 
and potentially mitigate these risks, it is crucial to adapt 
breast cancer screening strategies to accommodate the 
unique circumstances of young mothers, particularly 
during the vulnerable postpartum period. This adapta-
tion may involve reassessing the timing and frequency of 
mammograms to ensure early detection and treatment of 
breast cancer in this high-risk group.

Overall, based on the epidemiological studies, breast-
feeding exerts a protective effect against breast cancer, 
offering significant benefits for public health. Several 
mechanisms are proposed to explain how this effect 
comes about [120, 121]: Firstly, breastfeeding promotes 

Table 1 The function of various immune cells in breast 
microenvironment
Immune cells Functions First au-

thor/study 
(reference)

Macrophages CC-chemokine ligand 2 (CCL2) is an 
inflammatory cytokine critical for 
recruiting macrophages to sites of 
injury. When expressed constitutively 
by the mouse mammary epithelium, 
CCL2 induces a state of chronic low-
level inflammation that leads to an 
increased number of macrophages 
and enhanced stromal density.

Sun X [98]

Eosinophils Eosinophils secrete eosinophil 
peroxidase, an enzyme that promotes 
fibroblast recruitment and establish-
ment of collagen-rich ECM.

DeNichilo 
MO [99]

Cytokines Cytokines linked to neutrophil signal-
ing, such as granulocyte-monocyte 
colony-stimulating factor (GM-CSF), 
show elevated levels in collagen-
dense tumors. This increase indicates 
an enhanced recruitment and activa-
tion of neutrophils within the dense 
collagen tumor microenvironment.

García-
Mendoza 
MG [100]

Lymphocytes High mammographic density tis-
sue is characterized by increased 
infiltration of B cells and CD4 T cells, 
including activated T cells marked 
by PD-1 expression, as well as a pro-
tumor Th2 polarization indicated by 
elevated secretion of IL-6 and IL-4. 
This pro-tumorigenic microenviron-
ment potentially facilitates an escape 
from immune regulation, providing 
early tumor cell variants with a niche 
to evade immune surveillance and 
proliferate unchecked.

Huo CW 
[101]
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differentiation of breast cells for milk production, poten-
tially reducing their vulnerability to carcinogenic trans-
formation. Secondly, breastfeeding is associated with 
ovulatory cycles. The decrease in ovulation reduces the 
exposure to estrogen and other hormones that can pro-
mote breast cancer growth. Thirdly, during lactation, 
the shedding of breast epithelium may help to remove 
mutated cells and potentially eliminate carcinogens, 
thereby reducing the risk of cancer development. The 
concurrence of all these mechanisms represents the com-
plex biological pathways through which lactation may 
confer protection against breast cancer and emphasize its 
role in cancer prevention strategies. It is thus imperative 
that breastfeeding should be promoted as a potentially 
impactful strategy in reducing breast cancer incidence.

Breastfeeding and mammographic density
The significant effect of breastfeeding and mam-
mographic density on women’s health, can be bet-
ter understood in their relevance to breast cancer 
risk. Breastfeeding acts as a protective factor, whereas 
dense breast tissue is considered a risk factor. However, 
research on the association between the two has yielded 
inconsistent results, owing to the complex relationship 
between them and breast cancer risk which is liable to 
a combination of genetic, hormonal, and environmental 
factors. Furthermore, the underlying biological mecha-
nisms whereby breastfeeding may influence mammo-
graphic density remain uncertain.

Epidemiological evidence
The epidemiological studies on the association between 
breastfeeding and mammographic density have led to 
inconsistent findings [11, 38, 54, 57, 122–128]. Some link 
breastfeeding with lower mammographic density [122, 
125, 126, 128], particularly with prolonged duration, 
some suggest the opposite, associating it with higher 
mammographic density [11, 54], while others negate 
any significant relationship between the two [57, 124, 
127]. These divergent conclusions can be attributed to an 
assortment of variables, one of them being menopausal 
status, that hinder a clear understanding of this associa-
tion [38, 125, 128]. Another variable is the duration of 
breastfeeding which differs according to educational 
background and socioeconomic status. Reproductive 
history may also affect the results derived from related 
epidemiological studies by way of the number of preg-
nancies, the intervals between pregnancies, the duration 
of breastfeeding following each pregnancy, the dura-
tion of exclusive breastfeeding. All in all, the diversity of 
breastfeeding practices and reproductive patterns justi-
fies the complexity of the problem but without showing 
the way out.

Biological mechanisms
The biological mechanisms through which breastfeed-
ing impacts mammographic density remain elusive. 
The pregnancy-lactation-involution cycle represents a 
dynamic and multi-step process susceptible to many fac-
tors and involves significant changes in the breast tissue, 
starting with pregnancy, continuing through lactation, 
and concluding with the post-lactation involution. Each 
stage of this cycle could potentially affect breast tissue 
composition and consequently mammographic density. 
Breastfeeding significantly affects the physiological struc-
ture of the mammary glands, involving the proliferation 
of mammary gland tissues and the development of mam-
mary alveoli during pregnancy, the filling of alveoli and 
milk secretion during lactation, and the involution of 
alveoli and remodeling of mammary tissues during wean-
ing [121]. Moreover, the breast microenvironment—
encompassing gene expression, protein regulation, and 
the components of the ECM—may also be influenced by 
breastfeeding. All this evidence indicates that the var-
ied epidemiological findings on the association between 
breastfeeding and mammographic density could be a 
reflection of the complex mechanisms that regulate 
mammary gland development, as well as the multifaceted 
determinants of mammographic density. The biological 
impact of lactation on mammographic density is summa-
rized in Fig. 3.

Breastfeeding and involution
The post-lactational involution of breast tissues involve 
unique changes in the microenvironment, distinctly 
different from those that have not undergone lacta-
tion [115]. During mammary gland involution, a sig-
nificant portion of mammary epithelial cells undergo 
programmed cell death, while others return to their pre-
pregnancy state [120]. This remodeling process is influ-
enced by the duration of breastfeeding, suggesting that 
longer periods of lactation may lead to more pronounced 
changes in the breast tissue’s structure and composition. 
These alterations could potentially impact the overall 
breast microenvironment. When breastfeeding is not ini-
tiated after birth or is abruptly discontinued shortly after, 
the breast tissue undergoes a forced and abrupt involu-
tion. Conversely, when breastfeeding is sustained over 
an extended period and concludes gradually, the breast 
tissue undergoes a slow remodeling process known as 
gradual involution. Considering the clinical significance 
of understanding breast tissue dynamics, particularly 
in the context of breast cancer risk, it becomes impera-
tive to delve into the implications of these distinct invo-
lution patterns. By elucidating the differences between 
abrupt and gradual involution and their consequences for 
breast tissue composition and microenvironment, we can 
potentially uncover novel avenues for risk assessment and 
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prevention strategies. It is shown that under abrupt invo-
lution mammary glands from mice exhibited character-
istics distinct from those undergoing gradual involution 
[129]. Specifically, they displayed denser stroma, altered 
collagen composition, heightened inflammation and pro-
liferation, along with increased expression of estrogen 
receptor α (ERα) and progesterone receptor, compared to 
gradual involution. Furthermore, abrupt involution led to 
significant ductal hyperplasia, squamous metaplasia, and 
a sustained increase in luminal progenitor cells. These 
findings highlight the profound impact of the involution 
process on breast microenvironment, suggesting poten-
tial implications for understanding breast tissue changes 
and cancer risk associated with different breastfeeding 
patterns.

Breastfeeding and breast microenvironment
Breastfeeding significantly impacts the breast microenvi-
ronment, influencing the behavior and characteristics of 
epithelial cells and the ECM. In scenarios where breast-
feeding is not initiated or is of short duration, a termi-
nal bud structure persists in the breast tissue following 
involution [130]. This structural remnant leaves epithelial 
cells more susceptible to carcinogenic stimulation, poten-
tially facilitating the transformation of these cells into 
cancerous ones [130]. Abrupt involution in mouse mam-
mary glands has been shown to correlate with increased 
collagen deposition and a higher ratio of type I to type III 
collagen [129]. This finding suggests that the duration of 
breastfeeding following each pregnancy could influence 
mammographic density. Moreover, abrupt involution is 
associated with heightened expression of ERα, increased 
proliferation index, and the presence of hyperplasia and 
squamous metaplasia [129]. The findings further revealed 

that breast tissue from healthy women who breastfed for 
less than 6 months exhibited a positive enrichment of 
genes within the Notch signaling pathways which indi-
cated an active regulatory mechanism in these women’s 
breast tissue, which may influence breast development. 
It was demonstrated that constitutive Notch signaling 
specifically targets luminal progenitor cells for expansion 
[131]. This continuous activation can lead to hyperplasia, 
an abnormal increase in the number of cells, and poten-
tially to tumorigenesis, the formation of tumors. This 
suggests that while Notch signaling is crucial for normal 
breast development, its dysregulation may contribute to 
breast cancer pathogenesis. This observation provides 
additional evidence suggesting that never breastfeed-
ing or brief periods of breastfeeding might promote the 
expansion of luminal progenitor cells, which are asso-
ciated with breast cancer. These changes indicate that 
never breastfeeding or short-term breastfeeding may 
contribute to the development of a pro-tumorigenic 
environment.

Extended lactation has been demonstrated to offer 
protection against carcinogenesis mediated by preg-
nancy-associated plasma protein-A (PAPP-A), a preg-
nancy-dependent oncogene [132]. Research involving 
transgenic mice with PAPP-A expression in the mam-
mary gland during pregnancy and involution demon-
strated that PAPP-A promotes collagen deposition [132]. 
This increase in collagen facilitates the proteolytic activ-
ity of PAPP-A on insulin-like growth factor-binding 
proteins 4 and 5 (IGFBP-4 and IGFBP-5), enhancing 
insulin-like growth factor (IGF) signaling and further col-
lagen deposition. Notably, PAPP-A transgenic mice that 
lactated for extended periods did not develop mammary 
tumors, whereas those that lactated for shorter durations 

Fig. 3 The biological impact of lactation on mammographic density
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exhibited mammary tumors characterized by a specific 
collagen signature associated with tumors (TACS-3). 
The lactation-induced protective effect was linked to 
the upregulation of PAPP-A inhibitors, stanniocalcin-1 
(STC1), and stanniocalcin-2 (STC2), with prolonged lac-
tation correlating with higher levels of these inhibitors 
[132]. These elevated levels of STC1 and STC2 during 
extended lactation inactivate PAPP-A, even when overex-
pressed, preventing IGFBP-5 cleavage and allowing nor-
mal involution to proceed. Conversely, in the absence of 
lactation or during short lactation periods, PAPP-A lev-
els surpass those of its inhibitors, STC1 and STC2, lead-
ing to excessive IGFBP-5 degradation. This imbalance 
establishes a positive feedback loop between increased 
collagen deposition and enhanced IGF signaling. This 
augmented collagen deposition intensifies mammo-
graphic density, which is a recognized risk factor for 
tumorigenesis. Thus, the altered microenvironment not 
only contributes to higher mammographic density but 
also directly influences the progression towards breast 
cancer.

Breastfeeding and DNA methylation
DNA methylation, a common epigenetic modification 
in mammals, is facilitated by DNA methyltransferase 
enzymes, such as DNMT1, DNMT3a, and DNMT3b 
[133]. DNA methylation plays an important role in mod-
ulating gene expression without changing the underlying 
DNA sequence. This modification is pivotal in regulating 
gene expression, enabling the silencing or activation of 
genes without altering the DNA sequence itself. Impor-
tantly, DNA methylation has been identified as a key 
factor in the tumorigenesis of breast cancer, suggesting 
that alterations in methylation patterns can contribute 
to the initiation and progression of cancers [134]. Recent 
research has revealed distinct DNA methylation patterns 
between women with high mammographic density and 
those with low mammographic density who later develop 
breast cancer [135]. Specifically, differences were noted 
in genes responsible for regulating DNA transcription 
and cell apoptosis. This finding suggests that variations in 
DNA methylation related to mammographic density may 
influence key biological pathways, potentially affecting 
the risk of developing breast cancer. The protective effect 
of breastfeeding against breast cancer is partly attrib-
uted to the stimulation of prolactin, which enhances the 
expression of DNA methyltransferase enzymes in mam-
mary epithelial cells during lactation [136, 137]. This hor-
monal influence facilitates epigenetic modifications that 
could play a role in reducing cancer risk. Additionally, 
the presence of small molecules in breast milk, such as 
miR-29s, has been investigated for their role in regulating 
DNA methylation levels. MiR-29s specifically targets and 
inversely regulates DNMT3a and DNMT3b in mammary 

epithelial cells [138], suggesting a mechanism by which 
breastfeeding may influence the epigenetic landscape of 
the breast tissue. These findings highlight the complex 
interplay between hormonal changes during lactation 
and molecular mechanisms in breast milk that contribute 
to the protective effects of breastfeeding on breast can-
cer risk. Despite the recognition of the potential mecha-
nisms by which breastfeeding influences breast cancer 
risk through DNA methylation, there have been limited 
studies directly evaluating the relationship between DNA 
methylation, breastfeeding, and mammographic density. 
This gap in research highlights the need for further inves-
tigation into how breastfeeding may impact mammo-
graphic density through epigenetic modifications such 
as DNA methylation. Understanding this relationship 
could provide valuable insights into the complex inter-
play between genetic and environmental factors in breast 
cancer risk and the protective role of breastfeeding.

Future directions
Mammographic density is a key indicator of the breast 
tissue microenvironment, subject to modulation by sev-
eral established breast cancer risk factors. As a protec-
tive factor against breast cancer, prolonged lactation has 
been shown to reduce the risk of developing the disease. 
Drawing insights from contemporary epidemiological 
and molecular biology studies, our review sheds light on 
how lactation impacts on the mammographic density 
and explores their role in influencing the development of 
breast cancer (Fig. 4).

To address the complex relationship between breast-
feeding, mammographic density, and breast cancer, a 
multi-faceted research strategy is paramount. Firstly, 
future research should focus on combining advanced 
imaging techniques and genetic analysis to better under-
stand how breastfeeding affects mammographic density 
and breast cancer risk. This entails not only the refine-
ment of imaging methodologies to accurately quantify 
changes in mammographic density but also the explora-
tion of genetic markers that may influence these changes 
and their correlation with cancer development. Secondly, 
long-term studies are essential, especially those that con-
sider different ethnic groups and extend over long peri-
ods. These studies should carefully record details about 
reproduction, such as the number of pregnancies, time 
between pregnancies, how long breastfeeding lasted after 
each pregnancy, and the duration of exclusive breast-
feeding. This approach aims to clearly understand the 
connection between breastfeeding, changes in mam-
mographic density, and breast cancer development over 
time among various populations. Thirdly, it is essential 
to probe into the interconnections between breastfeed-
ing, mammographic density, lifestyle and environmental 
determinants. A holistic integration of these factors could 



Page 11 of 14Ye et al. International Breastfeeding Journal           (2024) 19:65 

unveil their cumulative influence on breast cancer risk, 
paving the way for identifying synergistic avenues for risk 
mitigation. Lastly, deepening our understanding of the 
association between breastfeeding, mammographic den-
sity, and breast cancer, developing innovative preventive 
and screening methodologies are helpful for breast can-
cer screening. Such strategies, particularly advantageous 
for individuals at elevated risk, would integrate insights 
into mammographic density and breastfeeding history 
into predictive models and screening protocols. Custom-
izing screening timetables and methodologies to reflect 
individual risk profiles holds the potential to markedly 
amplify the efficacy of early detection.
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